49,763 research outputs found

    Virginia Earth Science Collaborative Astronomy Course for Teachers

    Get PDF
    We describe the development and implementation of a professional development course for teachers of grades 4-12 designed to increase their content knowledge in astronomy, space science, and the nature of science using interactive presentations, and hands-on and inquiry-based lessons. The course, Space Science for Teachers, encompasses the astronomy and nature of science components of the Virginia Standards of Learning for grades 4-12 [1]. In addition to increasing their content knowledge, teachers gain experience using innovative teaching technologies, such as an inflatable planetarium, planetarium computer software, and computer controlled telescopes. The courses included evening laboratory sessions where teachers learned the constellations, how to find specific celestial objects, and how to use a variety of small telescopes. Participants received three graduate credit hours in science after completing the course requirements. Space Science for Teachers was taught at the University of Virginia in Summer 2005 and 2006, at George Mason University in Summer 2006 and 2007, at the University of Virginia Southwest Center in Abingdon, Virginia in Fall 2006, and at the MathScience Innovation Center in Richmond during Summer 2005 and 2007. A total of 135 teachers participated in the courses

    A human factors methodology for real-time support applications

    Get PDF
    A general approach to the human factors (HF) analysis of new or existing projects at NASA/Goddard is delineated. Because the methodology evolved from HF evaluations of the Mission Planning Terminal (MPT) and the Earth Radiation Budget Satellite Mission Operations Room (ERBS MOR), it is directed specifically to the HF analysis of real-time support applications. Major topics included for discussion are the process of establishing a working relationship between the Human Factors Group (HFG) and the project, orientation of HF analysts to the project, human factors analysis and review, and coordination with major cycles of system development. Sub-topics include specific areas for analysis and appropriate HF tools. Management support functions are outlined. References provide a guide to sources of further information

    A stellar census of the nearby, young 32 Orionis group

    Full text link
    The 32 Orionis group was discovered almost a decade ago and despite the fact that it represents the first northern, young (age ~ 25 Myr) stellar aggregate within 100 pc of the Sun (d≃93d \simeq 93 pc), a comprehensive survey for members and detailed characterisation of the group has yet to be performed. We present the first large-scale spectroscopic survey for new (predominantly M-type) members of the group after combining kinematic and photometric data to select candidates with Galactic space motion and positions in colour-magnitude space consistent with membership. We identify 30 new members, increasing the number of known 32 Ori group members by a factor of three and bringing the total number of identified members to 46, spanning spectral types B5 to L1. We also identify the lithium depletion boundary (LDB) of the group, i.e. the luminosity at which lithium remains unburnt in a coeval population. We estimate the age of the 32 Ori group independently using both isochronal fitting and LDB analyses and find it is essentially coeval with the {\beta} Pictoris moving group, with an age of 24±424\pm4 Myr. Finally, we have also searched for circumstellar disc hosts utilising the AllWISE catalogue. Although we find no evidence for warm, dusty discs, we identify several stars with excess emission in the WISE W4-band at 22 {\mu}m. Based on the limited number of W4 detections we estimate a debris disc fraction of 32−8+1232^{+12}_{-8} per cent for the 32 Ori group.Comment: Accepted for publication in MNRAS; 24 pages, 17 figures and 10 table

    Symmetries, Cluster Synchronization, and Isolated Desynchronization in Complex Networks

    Full text link
    Synchronization is of central importance in power distribution, telecommunication, neuronal, and biological networks. Many networks are observed to produce patterns of synchronized clusters, but it has been difficult to predict these clusters or understand the conditions under which they form, except for in the simplest of networks. In this article, we shed light on the intimate connection between network symmetry and cluster synchronization. We introduce general techniques that use network symmetries to reveal the patterns of synchronized clusters and determine the conditions under which they persist. The connection between symmetry and cluster synchronization is experimentally explored using an electro-optic network. We experimentally observe and theoretically predict a surprising phenomenon in which some clusters lose synchrony while leaving others synchronized. The results could guide the design of new power grid systems or lead to new understanding of the dynamical behavior of networks ranging from neural to social

    Complete Characterization of Stability of Cluster Synchronization in Complex Dynamical Networks

    Full text link
    Synchronization is an important and prevalent phenomenon in natural and engineered systems. In many dynamical networks, the coupling is balanced or adjusted in order to admit global synchronization, a condition called Laplacian coupling. Many networks exhibit incomplete synchronization, where two or more clusters of synchronization persist, and computational group theory has recently proved to be valuable in discovering these cluster states based upon the topology of the network. In the important case of Laplacian coupling, additional synchronization patterns can exist that would not be predicted from the group theory analysis alone. The understanding of how and when clusters form, merge, and persist is essential for understanding collective dynamics, synchronization, and failure mechanisms of complex networks such as electric power grids, distributed control networks, and autonomous swarming vehicles. We describe here a method to find and analyze all of the possible cluster synchronization patterns in a Laplacian-coupled network, by applying methods of computational group theory to dynamically-equivalent networks. We present a general technique to evaluate the stability of each of the dynamically valid cluster synchronization patterns. Our results are validated in an electro-optic experiment on a 5 node network that confirms the synchronization patterns predicted by the theory.Comment: 6 figure

    What Did You Do With Your Road Funds?

    Get PDF
    • …
    corecore